Question			Answer	Marks	Guidance	
1	(i)		$\begin{aligned} & \left(\begin{array}{c} -1 \\ 4 \\ 1 \end{array}\right) \times \overrightarrow{\mathrm{BC}}=\left(\begin{array}{c} -1 \\ 4 \\ 1 \end{array}\right) \times\left(\begin{array}{c} -6 \\ 18 \\ 3 \end{array}\right)=\left(\begin{array}{c} -6 \\ -3 \\ 6 \end{array}\right)\left[=3\left(\begin{array}{c} -2 \\ -1 \\ 2 \end{array}\right)\right] \\ & \text { Shortest distance is } \frac{\overrightarrow{\mathrm{AB}} \cdot \mathbf{d}}{\|\mathbf{d}\|}=\frac{\left(\begin{array}{c} 8 \\ -2 \\ -13 \end{array}\right) \cdot\left(\begin{array}{c} -2 \\ -1 \\ 2 \end{array}\right)}{\sqrt{2^{2}+1^{2}+2^{2}}} \\ & \text { Shortest distance is } \frac{40}{3} \end{aligned}$	M1* A1 M1* M1 A1 [5]	Vector product of directions Appropriate scalar product Evaluation of $\|\mathbf{d}\|$	Intention sufficient Dep * Dep **
		OR	$\begin{aligned} & {\left[\left(\begin{array}{c} 11-6 \lambda \\ 18 \lambda \\ -3+3 \lambda \end{array}\right)-\left(\begin{array}{c} 3-\mu \\ 2+4 \mu \\ 10+\mu \end{array}\right)\right] \cdot\left(\begin{array}{c} -1 \\ 4 \\ 1 \end{array}\right)=0} \\ & \text { and }\left(\begin{array}{c} 8-6 \lambda+\mu \\ -2+18 \lambda-4 \mu \\ -13+3 \lambda-\mu \end{array}\right) \cdot\left(\begin{array}{c} -6 \\ 18 \\ 3 \end{array}\right)=0 \\ & 81 \lambda-18 \mu=29,123 \lambda-27 \mu=41 \\ & \lambda=-\frac{5}{3}, \mu=-\frac{82}{9}, \quad \overrightarrow{\mathrm{XY}}=\left(\begin{array}{c} 80 / 9 \\ 40 / 9 \\ -80 / 9 \end{array}\right) \\ & \text { Shortest distance is } \sqrt{\left(\frac{80}{9}\right)^{2}+\left(\frac{40}{9}\right)^{2}+\left(\frac{80}{9}\right)^{2}} \end{aligned}$ Shortest distance is $\frac{40}{3}$		M1* Two appropriate scalar products A1 Two correct equations M1* Obtaining $\overrightarrow{\mathrm{XY}}$ M1 A1	Dep * Dep **

Question			Answer	Marks	Guidance	
1	(ii)		$\begin{aligned} & \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}=\left(\begin{array}{c} 8 \\ -2 \\ -13 \end{array}\right) \times\left(\begin{array}{c} -6 \\ 18 \\ 3 \end{array}\right)=\left(\begin{array}{c} 228 \\ 54 \\ 132 \end{array}\right) \\ & \|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}\|=\sqrt{228^{2}+54^{2}+132^{2}} \\ & \qquad\|\overrightarrow{\mathrm{BC}}\|=\sqrt{6^{2}+18^{2}+3^{2}} \\ & \text { Shortest distance is } \frac{\|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}\|}{\|\overrightarrow{\mathrm{BC}}\|}=\sqrt{\frac{72324}{369}} \end{aligned}$ Shortest distance is 14	M1* A2 M1* M1 A1 [6]	Appropriate vector product Give A1 if one error	Dep * Dep ** Sign error in vector product can earn M1A1M1M1A1
		OR	$\begin{aligned} & {\left[\left(\begin{array}{c} 11-6 \lambda \\ 18 \lambda \\ -3+3 \lambda \end{array}\right)-\left(\begin{array}{c} 3 \\ 2 \\ 10 \end{array}\right)\right] \cdot\left(\begin{array}{c} -6 \\ 18 \\ 3 \end{array}\right)=0} \\ & \lambda=\frac{1}{3} \end{aligned}$ Shortest distance is $\sqrt{(6)^{2}+(4)^{2}+(-12)^{2}}$ Shortest distance is 14		M1* Allow one error A1 M1* Obtaining a value of λ A1 M1 A1	Dep * Dep **

Question		Answer	Marks	Guidance	
1	(iii)	$\begin{aligned} & \left(\begin{array}{c} 11 \\ 0 \\ -3 \end{array}\right)+\lambda\left(\begin{array}{c} -6 \\ 18 \\ k+3 \end{array}\right)=\left(\begin{array}{c} 3 \\ 2 \\ 10 \end{array}\right)+\mu\left(\begin{array}{c} -1 \\ 4 \\ 1 \end{array}\right) \\ & 11-6 \lambda=3-\mu \\ & 18 \lambda=2+4 \mu \\ & \lambda=5, \quad \mu=22 \\ & -3+\lambda(k+3)=10+\mu \\ & k=4 \end{aligned}$ Point of intersection is $\left(\begin{array}{c}3 \\ 2 \\ 10\end{array}\right)+22\left(\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right)$ Point of intersection is $(-19,90,32)$	M1 A1 A1 M1 A1 M1 A1 [7]	Allow one error Two correct equations Obtaining a value of k	Must use different parameters Other methods possible (e.g. distance between lines is 0)
1	(iv)	$\left\|\left(\begin{array}{c} -1 \\ 4 \\ 1 \end{array}\right)\right\|=\sqrt{18} \text {, so } \overrightarrow{\mathrm{AD}}=(\pm) \frac{12}{\sqrt{18}}\left(\begin{array}{c} -1 \\ 4 \\ 1 \end{array}\right)=2 \sqrt{2}\left(\begin{array}{c} -1 \\ 4 \\ 1 \end{array}\right)$ Volume is $\frac{1}{6}(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}) \cdot \overrightarrow{\mathrm{AD}}$ $\begin{aligned} & =\frac{1}{6}\left[\left(\begin{array}{c} 8 \\ -2 \\ -13 \end{array}\right) \times\left(\begin{array}{c} 2 \\ 16 \\ -10 \end{array}\right)\right] \cdot(2 \sqrt{2})\left(\begin{array}{c} -1 \\ 4 \\ 1 \end{array}\right) \\ & =\frac{\sqrt{2}}{3}\left(\begin{array}{c} 228 \\ 54 \\ 132 \end{array}\right) \cdot\left(\begin{array}{c} -1 \\ 4 \\ 1 \end{array}\right)=\frac{\sqrt{2}}{3}(120) \\ & =40 \sqrt{2} \end{aligned}$	M1* A1 M1* A1 ft M1 A1 [6]	Obtaining $\overrightarrow{\mathrm{AD}}$ or D Appropriate scalar triple product Correct expression Evaluating scalar triple product Accept 56.6	Can be implied Dep **

Question		Answer	Marks	Guidance	
2	(i)	$\begin{aligned} & \frac{\partial z}{\partial x}=6 x^{2}+6 x+12 y \\ & \frac{\partial z}{\partial y}=6 y^{2}+6 y+12 x \\ & \text { If } \frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}, 6 x^{2}+6 x+12 y=6 y^{2}+6 y+12 x \\ & x^{2}-y^{2}-x+y=0 \\ & (x-y)(x+y-1)=0 \\ & y=x \text { or } y=1-x \end{aligned}$	B1 B1 M1 E1E1 [5]	Identifying factor ($x-y$)	SC If M0, then give B1 for verifying $y=x$ B1 for verifying $y=1-x$
2	(ii)	$\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}=0$ If $y=x$ then $6 x^{2}+6 x+12 x=0$ $x=0,-3$ Stationary points $(0,0,0)$ and $(-3,-3,54)$ If $y=1-x$ then $6 x^{2}+6 x+12(1-x)=0$ $x^{2}-x+2=0$ Which has no real roots ($D=-7<0$)	M1 M1 B1A1 M1 A1 [7]	Obtaining quadratic in x (or y) Obtaining a non-zero value of x Condone (0, 0) for B1 Obtaining quadratic with no real roots Correctly shown	Can be implied Or quartic, and factorising as x (linear)(quadratic) Just stating 'No real roots' M1A0
2	(iii)	$\begin{aligned} & \text { At } \mathrm{P}, \frac{\partial z}{\partial x}=\frac{21}{2}, \frac{\partial z}{\partial y}=\frac{21}{2} \\ & \delta z \approx \frac{\partial z}{\partial x} \delta x+\frac{\partial z}{\partial y} \delta y \\ & w \approx \frac{21}{2} h+\frac{21}{2} h \\ & h \approx \frac{w}{21} \end{aligned}$	M1 A1 M1 A1 ft A1	Substituting into $\frac{\partial z}{\partial x}$ or $\frac{\partial z}{\partial y}$	Correct value, or substitution seen

Questio		Answer	Marks	Guidance		
		[5]				
2	(iv)		$\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}=24$ If $y=x$ then $6 x^{2}+6 x+12 x=24$ $x=1,-4$ Points $(1,1,22)$ and $(-4,-4,32)$ If $y=1-x$ then $6 x^{2}+6 x+12(1-x)=24$ $x=2,-1$ Points $(2,-1,5)$ and $(-1,2,5)$	M1 M1 A1A1 M1 A1A1 [7]	Allow sign error Obtaining quadratic in x (or y) If neither correct, give A1 for $x=1,-4$ Obtaining quadratic in x (or y) If neither correct, give A1 for $x=2,-1$	24λ is M0 unless $\lambda= \pm 1$ appears later Or quartic, and one linear factor Or third linear factor of quartic
3	(a)	$\begin{aligned} & r^{2}+\left(\frac{\mathrm{d} r}{\mathrm{~d} \theta}\right)^{2}=a^{2}(1+\cos \theta)^{2}+(-a \sin \theta)^{2} \\ & =a^{2}\left(1+2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta\right)=2 a^{2}(1+\cos \theta) \\ & =4 a^{2} \cos ^{2} \frac{1}{2} \theta \\ & \text { Arc } \int \sqrt{r^{2}+\left(\frac{\mathrm{d} r}{\mathrm{~d} \theta}\right)^{2}} \mathrm{~d} \theta=\int_{0}^{\frac{1}{2} \pi} 2 a \cos \frac{1}{2} \theta \mathrm{~d} \theta \\ & =\left[4 a \sin \frac{1}{2} \theta\right]_{0}^{\frac{1}{2} \pi} \\ & =2 \sqrt{2} a \end{aligned}$	B1 M1 A1 M1 A1 A1 [6]	Condone ... $+(a \sin \theta)^{2}$ or $4 a^{2} \cos ^{4} \frac{1}{2} \theta+4 a^{2} \sin ^{2} \frac{1}{2} \theta \cos ^{2} \frac{1}{2} \theta$ Using $1+\cos \theta=2 \cos ^{2} \frac{1}{2} \theta$ For $\int \sqrt{r^{2}+\left(\frac{\mathrm{d} r}{\mathrm{~d} \theta}\right)^{2}} \mathrm{~d} \theta$ in terms of θ For $4 a \sin \frac{1}{2} \theta$	Limits not required	

Question			Answer	Marks	Guidance	
3	(b)	(i)	$\begin{aligned} & \begin{aligned} & \begin{aligned} 1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} & =1+\left(\frac{x^{2}}{2}-\frac{1}{2 x^{2}}\right)^{2} \\ & =\frac{x^{4}}{4}+\frac{1}{2}+\frac{1}{4 x^{4}} \\ & =\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right)^{2} \end{aligned} \\ & \text { Area is } \int_{2 \pi y}^{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \\ &= \int_{1}^{2} 2 \pi\left(\frac{x^{3}}{6}+\frac{1}{2 x}\right)\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right) \mathrm{d} x \\ &= 2 \pi \int_{1}^{2}\left(\frac{x^{5}}{12}+\frac{x}{3}+\frac{1}{4 x^{3}}\right) \mathrm{d} x \end{aligned} \\ & =2 \pi\left[\frac{x^{6}}{72}+\frac{x^{2}}{6}-\frac{1}{8 x^{2}}\right]_{1}^{2} \\ & = \end{aligned}$	B1 M1 A1 M1* A1 ft M1 A1 A1 [8]	Integral expression including limits Obtaining integrable form Allow one error	Dep *

Question			Answer		Guidance	
3	(b)	(ii)	$\begin{aligned} & \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x+\frac{1}{x^{3}} \quad\left(=\frac{17}{8}\right) \\ & \rho=\frac{\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right)^{3}}{x+\frac{1}{x^{3}}} \\ & =\frac{\left(1+\left(\frac{15}{8}\right)^{2}\right)^{\frac{3}{2}}}{2+\frac{1}{8}}=\frac{\left(\frac{17}{8}\right)^{3}}{\frac{17}{8}} \\ & =\frac{289}{64} \end{aligned}$	B1 M1 A1 ft A1 ft E1 [5]	Using formula for ρ or κ Correct expression for ρ or κ Correct numerical expression for ρ Correctly shown	
3	(b)	(iii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{15}{8}, \text { so unit normal is } \frac{1}{17}\binom{-15}{8} \\ & \mathbf{c}=\binom{2}{19 / 12}+\frac{289}{64}\binom{-15 / 17}{8 / 17} \end{aligned}$ Centre of curvature is $\left(-\frac{127}{64}, \frac{89}{24}\right)$	M1 A1 M1 A1A1 [5]	Obtaining a normal vector Correct unit normal Allow sign errors	Allow M1 for $\binom{ \pm 8}{ \pm 15}$ or $\binom{ \pm 15}{ \pm 8}$ Must use a unit vector

Question			Answer	Marks M1	Guidance	
4	(b)	(i)	$\begin{aligned} \mathrm{f}_{m} \mathrm{f}_{n}(x) & =\frac{\frac{x}{1+n x}}{1+m\left(\frac{x}{1+n x}\right)} \\ & =\frac{x}{1+n x+m x}=\frac{x}{1+(m+n) x}=\mathrm{f}_{m+n}(x) \end{aligned}$		Composition of functions Correctly shown	In either order E0 if in wrong order
4	(b)	(ii)	$\begin{aligned} & \left(\mathrm{f}_{m} \mathrm{f}_{n}\right) \mathrm{f}_{p}=\mathrm{f}_{m+n} \mathrm{f}_{p}=\mathrm{f}_{m+n+p} \\ & \mathrm{f}_{m}\left(\mathrm{f}_{n} \mathrm{f}_{p}\right)=\mathrm{f}_{m} \mathrm{f}_{n+p}=\mathrm{f}_{m+n+p} \end{aligned}$ Hence S is associative	M1 E1 [2]	Combining three functions Correctly shown	M1E1 bod for $\left(\mathrm{f}_{m} \mathrm{f}_{n}\right) \mathrm{f}_{p}=\mathrm{f}_{m+n+p}=\mathrm{f}_{m}\left(\mathrm{f}_{n} \mathrm{f}_{p}\right)$
4	(b)	(iii)	$\begin{aligned} & \text { For any } \mathrm{f}_{m}, \mathrm{f}_{n} \text { in } S, \mathrm{f}_{m} \mathrm{f}_{n}=\mathrm{f}_{m+n} \\ & \mathrm{f}_{m} \mathrm{f}_{n} \text { is in } S \text { (so } S \text { is closed) } \\ & \text { Identity is } \mathrm{f}_{0} \\ & \text { Inverse of } \mathrm{f}_{n} \text { is } \mathrm{f}_{-n} \\ & \quad \text { since } \mathrm{f}_{n} \mathrm{f}_{-n}=\mathrm{f}_{n-n}=\mathrm{f}_{0} \end{aligned}$ S is also associative, and hence is a group	M1 A1 B1 B1 B1 E1 [6]	Referring to this in context $\text { B0 for } x \quad \text { B1 for } n=0$ Closure, associativity, identity and inverses must all be mentioned in (iii)	Dependent on previous 5 marks
4	(b)	(iv)	$\left\{\mathrm{f}_{2 n}\right\}$ for all integers n	B2 [2]	Or $\left\{f_{3 n}\right\}$, etc Give B1 for multiples of 2 (or 3, etc) but not completely correctly described	e.g. $\left\{\mathrm{f}_{0}, \mathrm{f}_{2}, \mathrm{f}_{4}, \mathrm{f}_{6}, \ldots\right\}$

Question		Answer Pre-multiplication by transition matrix $\mathbf{P}=\left(\begin{array}{ccccc} 1 & 0.5 & 0 & 0 & 0 \\ 0 & 0.05 & 0.5 & 0 & 0 \\ 0 & 0.45 & 0.05 & 0.5 & 0 \\ 0 & 0 & 0.45 & 0.05 & 0 \\ 0 & 0 & 0 & 0.45 & 1 \end{array}\right)$	Marks		
5	(i)		B3 [3]	Allow tolerance of ± 0.0001 in probabilities throughout this question Give B2 for four columns correct Give B1 for two columns correct	
5	(ii)	$\mathbf{P}^{8}\left(\begin{array}{c}0 \\ 1 / 3 \\ 1 / 3 \\ 1 / 3 \\ 0\end{array}\right)=\left(\begin{array}{c}0.5042 \\ 0.0230 \\ 0.0278 \\ \mathbf{0 . 0 2 0 7 1} \\ 0.4242\end{array}\right) \quad \mathrm{P}(3 \mathrm{lives})=0.0207(4 \mathrm{dp})$	M1 E1 [2]	For \mathbf{P}^{8} (allow \mathbf{P}^{7} or \mathbf{P}^{9}) and initial column matrix Correctly shown	
5	(iii)	Let $\mathrm{q}(n)=\mathrm{P}($ not yet ended after n tasks $)$ $\begin{aligned} & \quad=\left(\begin{array}{lllll} 0 & 1 & 1 & 1 & 0 \end{array}\right) \mathbf{P}^{n}\left(\begin{array}{c} 0 \\ 1 / 3 \\ 1 / 3 \\ 1 / 3 \\ 0 \end{array}\right) \\ & \mathrm{q}(10)=0.0371 \end{aligned}$	M1 M1 A1 [3]	Obtaining probabilities after 10 tasks Adding probabilities of 1, 2, 3 lives	Allow M1 for using \mathbf{P}^{9} or \mathbf{P}^{11}

Question			Answer	Marks	Guidance	
5	(iv)		$\begin{aligned} & \mathrm{q}(9)-\mathrm{q}(10) \\ & \quad=0.05072-0.03709 \\ & \quad=0.0136 \end{aligned}$	M1 M1 A1 [3]	Using $q(9)$ and $q(10)$ Evaluating q(9)	
		OR	$\begin{aligned} & \mathbf{P}^{9}\left(\begin{array}{c} 0 \\ 1 / 3 \\ 1 / 3 \\ 1 / 3 \\ 0 \end{array}\right)=\left(\begin{array}{c} \cdot \\ 0.01506 \\ \cdot \\ 0.01355 \\ \cdot \end{array}\right) \\ & 0.01506 \times 0.5+0.01355 \times 0.45 \\ & =0.0136 \end{aligned}$		M1 Probs of 1 and 3 lives after 9 tasks M1 A1	
5	(v)		$\begin{aligned} & \hline \mathrm{q}(13)=0.01374 \\ & \mathrm{q}(14)=0.00998 \\ & \text { Smallest } N \text { is } 14 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Evaluating $q(n)$ for some $n>10$ Consecutive values each side of 0.01 Must be clear that their answer is 14	Just $N=14$ www earns B3
5	(vi)		$\mathbf{P}^{n} \rightarrow\left(\begin{array}{ccccc}1 & 0.7880 & 0.5525 & 0.2908 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0.2120 & 0.4475 & 0.7092 & 1\end{array}\right)=\mathbf{L}$	B2 [2]	Give B1 for any element correct to 3 dp (other than 0 or 1)	
5	(vii)		$\begin{aligned} & \mathbf{L}\left(\begin{array}{c} 0 \\ 1 / 3 \\ 1 / 3 \\ 1 / 3 \\ 0 \end{array}\right)=\left(\begin{array}{c} 0.5438 \\ 0 \\ 0 \\ 0 \\ 0.4562 \end{array}\right) \\ & \mathrm{P}(\text { wins a prize })=0.4562 \end{aligned}$	M1M1 A1 [3]	Using \mathbf{L} and the initial column matrix	

Question		Answer	Marks B1 ft B1 [2]	Guidance	
5	(viii)	Maximum probability is 0.7092 Always start with 3 lives			
5	(ix)	$\begin{aligned} & \mathbf{L}\left(\begin{array}{c} 0 \\ 0.1 \\ p \\ q \\ 0 \end{array}\right)=\left(\begin{array}{c} 0.4 \\ 0 \\ 0 \\ 0 \\ 0.6 \end{array}\right) \\ & 0.7880 \times 0.1+0.5525 p+0.2908(0.9-p)=0.4 \\ & P(2 \text { lives })=0.2273, \quad P(3 \text { lives })=0.6727 \end{aligned}$	M1 M1 A1 [3]	Or $0.0212+0.4475 p+0.7092(0.9-p)=0.6$ Obtaining a value for p or q Accept values rounding to $0.227,0.673$	Allow use of $p+q=1$
5		Post-multiplication by transition matrix		Allow tolerance of ± 0.0001 in probabilities throughout this question	
5	(i)	$\mathbf{P}=\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0.5 & 0.05 & 0.45 & 0 & 0 \\ 0 & 0.5 & 0.05 & 0.45 & 0 \\ 0 & 0 & 0.5 & 0.05 & 0.45 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$	B3 [3]	Give B2 for four rows correct Give B1 for two rows correct	
5	(ii)	$\begin{aligned} & \left(\begin{array}{llllll} 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \end{array}\right) \mathbf{P}^{8} \\ & =\left(\begin{array}{lllll} 0.5042 & 0.0230 & 0.0278 & \mathbf{0 . 0 2 0 7 1} & 0.4242 \end{array}\right) \\ & \\ & \\ & \\ & \left(\begin{array}{ll} 3 & \text { lives }) \end{array}\right. \\ & =0.0207 \end{aligned}\left(\begin{array}{ll} 4 \mathrm{dp}) \end{array}\right.$	M1 E1 [2]	For \mathbf{P}^{8} (allow \mathbf{P}^{7} or \mathbf{P}^{9}) and initial row matrix Correctly shown	

Question			Answer Let $\mathrm{q}(n)=\mathrm{P}($ not yet ended after n tasks $)$	Marks	Guidance	
5	(iii)		Let $\mathrm{q}(n)=\mathrm{P}($ not yet ended after n tasks) $=\left(\begin{array}{lllll} 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \end{array}\right) \mathbf{P}^{n}\left(\begin{array}{l} 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{array}\right)$ $\mathrm{q}(10)=0.0371$	M1 M1 A1 [3]	Obtaining probabilities after 10 tasks Adding probabilities of 1, 2, 3 lives	Allow M1 for using \mathbf{P}^{9} or \mathbf{P}^{11}
5	(iv)		$\begin{aligned} & \mathrm{q}(9)-\mathrm{q}(10) \\ & \quad=0.05072-0.03709 \\ & \quad=0.0136 \end{aligned}$	M1 M1 A1 [3]	Using $q(9)$ and $q(10)$ Evaluating $q(9)$	
		OR	$\begin{aligned} & \left(\begin{array}{lllll} 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \end{array}\right) \mathbf{P}^{9} \\ & \\ & \\ & \\ & =\left(\begin{array}{llll} . & 0.01506 & .0 .01355 & . \end{array}\right) \\ & 0.01506 \times 0.5+0.01355 \times 0.45 \\ & \\ & = \end{aligned}$		M1 Probs of 1 and 3 lives after 9 tasks M1 A1	
5	(v)		$\begin{aligned} & \hline \mathrm{q}(13)=0.01374 \\ & \mathrm{q}(14)=0.00998 \\ & \text { Smallest } N \text { is } 14 \end{aligned}$	M1 M1 A1 [3]	Evaluating $q(n)$ for some $n>10$ Consecutive values each side of 0.01 Must be clear that their answer is 14	Just $N=14$ www earns B3
5	(vi)		$\mathbf{P}^{n} \rightarrow\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0.7880 & 0 & 0 & 0 & 0.2120 \\ 0.5525 & 0 & 0 & 0 & 0.4475 \\ 0.2908 & 0 & 0 & 0 & 0.7092 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)=\mathbf{L}$	B2 [2]	Give B1 for any element correct to 3 dp (other than 0 or 1)	

Question		Answer	Marks M1M1	Guidance	
5	(vii)	$\begin{aligned} &\left(\begin{array}{lllll} 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \end{array}\right) \mathbf{L} \\ &=\left(\begin{array}{llllll} 0.5438 & 0 & 0 & 0 & 0.4562 \end{array}\right) \\ & \mathrm{P}(\text { wins a prize })=0.4562 \end{aligned}$		Using \mathbf{L} and the initial row matrix	
5	(viii)	Maximum probability is 0.7092 Always start with 3 lives	$\begin{gathered} \mathrm{B} 1 \mathrm{ft} \\ \text { B1 } \\ \text { [2] } \\ \hline \end{gathered}$		
5	(ix)	$\left.\left.\left.\begin{array}{l} \left(\begin{array}{lllll} 0 & 0.1 & p & q & 0 \end{array}\right) \mathbf{L} \\ \\ \quad=\left(\begin{array}{lllll} 0.4 & 0 & 0 & 0 & 0.6 \end{array}\right) \\ 0.7880 \times 0.1+0.5525 \\ \hline \end{array}\right]+0.2908(0.9-p)=0.4\right\} \text { (2 lives }\right)=0.2273, \quad \mathrm{P}(3 \text { lives })=0.6727 .$	M1 M1 A1 [3]	Or $0.0212+0.4475 p+0.7092(0.9-p)=0.6$ Accept values rounding to $0.227,0.673$	Allow use of $p+q=1$

