Question		Answer	Marks	Guidan	ce
1	(i)	$\begin{bmatrix} -1\\4\\1 \end{bmatrix} \times \overrightarrow{BC} = \begin{bmatrix} -1\\4\\1 \end{bmatrix} \times \begin{bmatrix} -6\\18\\3 \end{bmatrix} = \begin{bmatrix} -6\\-3\\6 \end{bmatrix} \begin{bmatrix} -2\\-1\\2 \end{bmatrix}$	M1* A1	Vector product of directions	Intention sufficient
		Shortest distance is $\frac{\overrightarrow{AB} \cdot \mathbf{d}}{ \mathbf{d} } = \frac{\begin{pmatrix} 8\\ -2\\ -13 \end{pmatrix} \cdot \begin{pmatrix} -2\\ -1\\ 2 \end{pmatrix}}{\sqrt{2^2 + 1^2 + 2^2}}$	M1* M1	Appropriate scalar product Evaluation of d	Dep * Dep **
		Shortest distance is $\frac{40}{3}$	A1 [5]		
	OF	$\begin{bmatrix} \begin{pmatrix} 11-6\lambda\\18\lambda\\-3+3\lambda \end{pmatrix} - \begin{pmatrix} 3-\mu\\2+4\mu\\10+\mu \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} -1\\4\\1 \end{pmatrix} = 0$ and $\begin{pmatrix} 8-6\lambda+\mu\\-2+18\lambda-4\mu\\-13+3\lambda-\mu \end{pmatrix} \cdot \begin{pmatrix} -6\\18\\3 \end{pmatrix} = 0$		M1* Two appropriate scalar products	
		$ \begin{array}{c} 81\lambda - 18\mu = 29, 123\lambda - 27\mu = 41 \\ \lambda = -\frac{5}{3}, \mu = -\frac{82}{9}, \overrightarrow{XY} = \begin{pmatrix} 80/9 \\ 40/9 \\ -80/9 \\ -80/9 \end{pmatrix} \end{array} $		A1 Two correct equations M1* Obtaining \overrightarrow{XY}	Dep *
		Shortest distance is $\sqrt{\left(\frac{80}{9}\right)^2 + \left(\frac{40}{9}\right)^2 + \left(\frac{80}{9}\right)^2}$		M1	Dep **
		Shortest distance is $\frac{40}{3}$		A1	

June	2013	
------	------	--

Question		n	Answer	Marks	Guidance	
1	(ii)		$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{pmatrix} 8 \\ -2 \end{pmatrix} \times \begin{pmatrix} -6 \\ 18 \end{pmatrix} = \begin{pmatrix} 228 \\ 54 \end{pmatrix}$	M1*	Appropriate vector product	
			$\begin{pmatrix} 2 \\ -13 \end{pmatrix} \begin{pmatrix} 10 \\ 3 \end{pmatrix} \begin{pmatrix} 31 \\ 132 \end{pmatrix}$	A2	Give A1 if one error	
			$\left \overrightarrow{AB} \times \overrightarrow{BC} \right = \sqrt{228^2 + 54^2 + 132^2}$	M1*		Dep *
			$\left \overrightarrow{\mathrm{BC}} \right = \sqrt{6^2 + 18^2 + 3^2}$			
			Shortest distance is $\frac{\left \overrightarrow{AB} \times \overrightarrow{BC} \right }{\left \overrightarrow{BC} \right } = \sqrt{\frac{72324}{369}}$	M1		Dep **
			Shortest distance is 14	A1 [6]		Sign error in vector product can earn MIAIMIMIAI
		OR	$\begin{bmatrix} \begin{pmatrix} 11-6\lambda\\18\lambda\\-3+3\lambda \end{bmatrix} - \begin{pmatrix} 3\\2\\10 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} -6\\18\\3 \end{bmatrix} = 0$		M1* Allow one error A1	
					M1* Obtaining a value of λ	Dep *
			$\lambda = \frac{1}{3}$		A1	
			Shortest distance is $\sqrt{(6)^2 + (4)^2 + (-12)^2}$		M1	Dep **
			Shortest distance is 14		A1	

Question		Answer	Marks	Guidance		
1	(iii)	$ \begin{pmatrix} 11\\0\\-3 \end{pmatrix} + \lambda \begin{pmatrix} -6\\18\\k+3 \end{pmatrix} = \begin{pmatrix} 3\\2\\10 \end{pmatrix} + \mu \begin{pmatrix} -1\\4\\1 \end{pmatrix} $				
		$11 - 6\lambda = 3 - \mu$ $18\lambda = 2 + 4\mu$	M1 A1	Allow one error Two correct equations	Must use different parameters	
		$\lambda = 5, \mu = 22$	A1			
		$-3 + \lambda(k+3) = 10 + \mu$ $k = 4$	M1 A1	Obtaining a value of k	<i>Other methods possible</i> (e.g. distance between lines is 0)	
		Point of intersection is $\begin{pmatrix} 3 \\ 2 \\ 10 \end{pmatrix} + 22 \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$	M1			
		Point of intersection is (-19, 90, 32)	A1			
1	(iv)	$\begin{vmatrix} -1 \\ 4 \\ 1 \end{vmatrix} = \sqrt{18} \text{, so } \overrightarrow{AD} = (\pm) \frac{12}{\sqrt{18}} \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix} = 2\sqrt{2} \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$	[7] M1* A1	Obtaining \overrightarrow{AD} or D		
		Volume is $\frac{1}{6}(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}$	M1*	Appropriate scalar triple product		
		$= \frac{1}{6} \begin{bmatrix} 8\\-2\\-13 \end{bmatrix} \times \begin{pmatrix} 2\\16\\-10 \end{bmatrix} \cdot (2\sqrt{2}) \begin{pmatrix} -1\\4\\1 \end{bmatrix}$	A1 ft	Correct expression	Can be implied	
		$=\frac{\sqrt{2}}{3} \begin{pmatrix} 228\\54\\132 \end{pmatrix} \cdot \begin{pmatrix} -1\\4\\1 \end{pmatrix} = \frac{\sqrt{2}}{3} (120)$	M1	Evaluating scalar triple product	Dep **	
		$=40\sqrt{2}$	A1 [6]	Accept 56.6		

	Questio	n	Answer	Marks	Guidance		
2	(i)		$\frac{\partial z}{\partial x} = 6x^2 + 6x + 12y$	B1			
			$\frac{\partial z}{\partial y} = 6y^2 + 6y + 12x$	B1			
			If $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}$, $6x^2 + 6x + 12y = 6y^2 + 6y + 12x$				
			$x^2 - y^2 - x + y = 0$				
			(x-y)(x+y-1) = 0	M1	Identifying factor $(x - y)$	SC If M0, then give	
			y = x or $y = 1 - x$	E1E1		B1 for verifying $y = x$	
				[5]		B1 for verifying $y = 1 - x$	
2	(ii)		$\partial z \partial z$	[5]			
			$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$	M1		Can be implied	
			If $y = x$ then $6x^2 + 6x + 12x = 0$	M1	Obtaining quadratic in <i>x</i> (or <i>y</i>)	Or quartic, and factorising as $x(\text{linear})(\text{quadratic})$	
			x = 0, -3	M1	Obtaining a non-zero value of x		
			Stationary points $(0, 0, 0)$ and $(-3, -3, 54)$	B1A1	Condone $(0, 0)$ for B1		
			If $y = 1 - x$ then $6x^2 + 6x + 12(1 - x) = 0$				
			$x^2 - x + 2 = 0$	M1	Obtaining quadratic with no real roots		
			Which has no real roots $(D = -7 < 0)$	A1 [7]	Correctly shown	Just stating 'No real roots' M1A0	
2	(iii)		At P, $\frac{\partial z}{\partial x} = \frac{21}{2}$, $\frac{\partial z}{\partial y} = \frac{21}{2}$	M1 A1	Substituting into $\frac{\partial z}{\partial x}$ or $\frac{\partial z}{\partial y}$	Correct value, or substitution seen	
			$\delta z \approx \frac{\partial z}{\partial x} \delta x + \frac{\partial z}{\partial y} \delta y$	M1			
			$w \approx \frac{21}{2}h + \frac{21}{2}h$	A1 ft			
			$h \approx \frac{w}{21}$	A1			

June	201	3
------	-----	---

	Question		Answer	Marks	Guidance		
				[5]			
2	(iv)		$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = 24$	M1	Allow sign error	24λ is M0 unless $\lambda = \pm 1$ appears later	
			If $y = x$ then $6x^2 + 6x + 12x = 24$ x = 1 - 4	M1	Obtaining quadratic in <i>x</i> (or <i>y</i>)	Or quartic, and one linear factor	
			Points $(1, 1, 22)$ and $(-4, -4, 32)$	A1A1	If neither correct, give A1 for $x = 1, -4$		
			If $y=1-x$ then $6x^2 + 6x + 12(1-x) = 24$ x=2, -1	M1	Obtaining quadratic in <i>x</i> (or <i>y</i>)	Or third linear factor of quartic	
			Points $(2, -1, 5)$ and $(-1, 2, 5)$	A1A1 [7]	If neither correct, give A1 for $x = 2$, -1		
3	(a)		$r^{2} + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^{2} = a^{2}(1 + \cos\theta)^{2} + (-a\sin\theta)^{2}$	B1	Condone $+(a\sin\theta)^2$		
			$=a^{2}(1+2\cos\theta+\cos^{2}\theta+\sin^{2}\theta)=2a^{2}(1+\cos\theta)$		or $4a^2\cos^4\frac{1}{2}\theta + 4a^2\sin^2\frac{1}{2}\theta\cos^2\frac{1}{2}\theta$		
				M1	Using $1 + \cos\theta = 2\cos^2\frac{1}{2}\theta$		
			$=4a^2\cos^2\frac{1}{2}\theta$	A1			
			Arc $\int \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta = \int_0^{\frac{1}{2}\pi} 2a\cos\frac{1}{2}\theta \mathrm{d}\theta$	M1	For $\int \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta$ in terms of θ	Limits not required	
			$= \left[\begin{array}{c} 4a\sin\frac{1}{2}\theta \end{array} \right]_{0}^{\frac{1}{2}\pi}$	A1	For $4a\sin\frac{1}{2}\theta$		
			$=2\sqrt{2} a$	A1			
				[6]			

June	2013	
------	------	--

	Question	n	Answer	Marks	Guidan	ce
3	(b)	(i)	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \left(\frac{x^2}{2} - \frac{1}{2x^2}\right)^2$	B1		
			$=\frac{x^4}{4} + \frac{1}{2} + \frac{1}{4x^4}$	M1		
			$= \left(\frac{x^2}{2} + \frac{1}{2x^2}\right)^2$	A1		
			Area is $\int 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	M1*		
			$= \int_{1}^{2} 2\pi \left(\frac{x^{3}}{6} + \frac{1}{2x}\right) \left(\frac{x^{2}}{2} + \frac{1}{2x^{2}}\right) dx$	A1 ft	Integral expression including limits	
			$=2\pi \int_{1}^{2} \left(\frac{x^{5}}{12} + \frac{x}{3} + \frac{1}{4x^{3}}\right) dx$	M1	Obtaining integrable form	Dep *
			$=2\pi \left[\frac{x^6}{72} + \frac{x^2}{6} - \frac{1}{8x^2} \right]_1^2$	A1	Allow one error	
			$=\frac{47\pi}{16}$	A1		
			-	[8]		

June	2013	
------	------	--

Question		n	Answer	Marks	Guidan	ice
3	(b)	(ii)	$\frac{d^2 y}{dx^2} = x + \frac{1}{x^3} (=\frac{17}{8})$	B1		
			$\left(\frac{x^2}{2} + \frac{1}{2x^2}\right)^3$	M1	Using formula for ρ or κ	
			$\rho = \frac{\sqrt{x} + \frac{1}{x^3}}{x + \frac{1}{x^3}}$	A1 ft	Correct expression for ρ or κ	
			$=\frac{\left(1+\left(\frac{15}{8}\right)^2\right)^{\frac{3}{2}}}{2+\frac{1}{8}}=\frac{\left(\frac{17}{8}\right)^3}{\frac{17}{8}}$	A1 ft	Correct numerical expression for ρ	
			$=\frac{289}{64}$	E1	Correctly shown	
				[5]		
3	(b)	(iii)	$\frac{dy}{dx} = \frac{15}{8}$, so unit normal is $\frac{1}{17} \begin{pmatrix} -15\\ 8 \end{pmatrix}$	M1 A1	Obtaining a normal vector Correct unit normal	Allow M1 for $\begin{pmatrix} \pm 8 \\ \pm 15 \end{pmatrix}$ or $\begin{pmatrix} \pm 15 \\ \pm 8 \end{pmatrix}$
			$\mathbf{c} = \begin{pmatrix} 2\\ 19/12 \end{pmatrix} + \frac{289}{64} \begin{pmatrix} -15/17\\ 8/17 \end{pmatrix}$	M1	Allow sign errors	Must use a unit vector
			Centre of curvature is $\left(-\frac{127}{64}, \frac{89}{24}\right)$	A1A1		
				[5]		

PMT

Question		n	Answer	Marks	Guidance	
4	(a)	(i)	Identity is e Element a b c d e f g h	B1 B2	Give B1 for four correct	
			Inverse b a c g e h d f	[3]		
4	(a)	(ii)		M1	Finding powers of an element	At least fourth power
				A1	Identifying d (or f or g or h) as a generator	Implies previous M1
			$d^2 = a, d^4 = c$	A1	Or $f^2 = b$, $f^4 = c$	
					Or $g^2 = b$, $g^4 = c$	
					Or $h^2 = a$, $h^4 = c$	
			Hence d has order 8, and G is cyclic	E1	Correctly shown	
				[4]		
4	(a)	(iii)	H 0 2 4 6 8 10 12 14	D1	For $e \leftrightarrow 0$ and $c \leftrightarrow 8$	
			G e a a f c h b g	BI B1	For $\{d, f, g, h\}$ (2, 6, 10, 14)	In any order
			or e g b h c f a d	B1	For a fully correct isomernhism	In any order
			or e h a g c d b f		For a furry correct isomorphism	
				[3]		
4	(a)	(iv)	Rotations have order 2 or 4 Reflections have order 2	B1	Correct statement about rotations and/or reflections which implies non-IM	Or (4) reflections (and 180° rotation) have order 2 Or composition of reflections (or 90° rotation and reflection) is not commutative
			There is no element of order 8		Or More than one element of order 2 Or Not commutative	
			Hence not isomorphic	E1 [2]	Fully correct explanation	Dependent on previous B1

Question		n	Answer	Marks	Guidance	
4	(b)	(i)	$f_m f_n(x) = \frac{\frac{x}{1+nx}}{1+m\left(\frac{x}{1+nx}\right)}$	M1	Composition of functions	In either order
			$=\frac{x}{1+nx+mx} = \frac{x}{1+(m+n)x} = f_{m+n}(x)$	E1	Correctly shown	E0 if in wrong order
4	(b)	(ii)	$(\mathbf{f}_m \mathbf{f}_n) \mathbf{f}_p = \mathbf{f}_{m+n} \mathbf{f}_p = \mathbf{f}_{m+n+p}$	M1	Combining three functions	
			$f_m(f_n f_p) = f_m f_{n+p} = f_{m+n+p}$ Hence <i>S</i> is associative	E1 [2]	Correctly shown	M1E1 bod for $(\mathbf{f}_m \mathbf{f}_n) \mathbf{f}_p = \mathbf{f}_{m+n+p} = \mathbf{f}_m (\mathbf{f}_n \mathbf{f}_p)$
4	(b)	(iii)	For any f_m , f_n in <i>S</i> , $f_m f_n = f_{m+n}$	M1	Referring to this in context	
			$f_m f_n$ is in S (so S is closed)	A1		
			Identity is f ₀	B1	B0 for x B1 for $n = 0$	
			Inverse of f_n is f_{-n}	B1		
			since $f_n f_{-n} = f_{n-n} = f_0$	B1		
			S is also associative, and hence is a group	E1	Closure, associativity, identity and inverses must all be mentioned in (iii)	Dependent on previous 5 marks
4	(b)	(iv)	$\{f_{n}\}$ for all integers <i>n</i>	[6] B2	$Or \{f_{i}\}$ etc.	
			(1_{2n}) for an integers <i>n</i>	[2]	Give B1 for multiples of 2 (or 3, etc) but not completely correctly described	e.g. { f_0 , f_2 , f_4 , f_6 , }

	Question	Answer	Marks	Guidance
5		Pre-multiplication by transition matrix		Allow tolerance of ± 0.0001 in
				probabilities throughout this question
	(i)	$\mathbf{P} = \begin{pmatrix} 1 & 0.5 & 0 & 0 & 0 \\ 0 & 0.05 & 0.5 & 0 & 0 \\ 0 & 0.45 & 0.05 & 0.5 & 0 \\ 0 & 0 & 0.45 & 0.05 & 0 \\ 0 & 0 & 0 & 0.45 & 1 \end{pmatrix}$	В3	Give B2 for four columns correct Give B1 for two columns correct
			[3]	
5	(ii)	$\mathbf{P}^{8} \begin{pmatrix} 0 \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ 0 \end{pmatrix} = \begin{pmatrix} 0.5042 \\ 0.0230 \\ 0.0278 \\ 0.0278 \\ 0.02071 \\ 0.4242 \end{pmatrix} P(3 \text{ lives}) = 0.0207 \ (4 \text{ dp})$	M1 E1 [2]	For \mathbf{P}^8 (allow \mathbf{P}^7 or \mathbf{P}^9) and initial column matrix Correctly shown
5	(iii)	Let $q(n) = P(\text{not yet ended after } n \text{ tasks})$		
		$= \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \end{pmatrix} \mathbf{P}^{n} \begin{pmatrix} 0 \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ 0 \end{pmatrix}$	M1 M1	Obtaining probabilities after 10 tasks Adding probabilities of 1, 2, 3 lives Allow M1 for using \mathbf{P}^9 or \mathbf{P}^{11}
		q(10) = 0.0371	A1 [3]	

Question		n	Answer	Marks	Guidance	
5	(iv)		q(9) - q(10)	M1	Using $q(9)$ and $q(10)$	
			= 0.05072 - 0.03709	M1	Evaluating q(9)	
			= 0.0136	A1		
		OD		[3]		
		OK	$\mathbf{P}^{9} \begin{pmatrix} 0\\ \frac{1}{3}\\ \frac{1}{3}\\ \frac{1}{3}\\ \frac{1}{3}\\ 0 \end{pmatrix} = \begin{pmatrix} .\\ 0.01506\\ .\\ 0.01355\\ . \end{pmatrix}$		M1 Probs of 1 and 3 lives after 9 tasks	
			$0.01506\!\times\!0.5\!+\!0.01355\!\times\!0.45$		M1	
			= 0.0136		A1	
5	(v)		q(13) = 0.01374 q(14) = 0.00998	M1 M1	Evaluating $q(n)$ for some $n > 10$ Consecutive values each side of 0.01	
			Smallest N is 14	A1 [3]	Must be clear that their answer is 14	Just $N = 14$ www earns B3
5	(vi)		$\mathbf{P}^{n} \rightarrow \begin{pmatrix} 1 & 0.7880 & 0.5525 & 0.2908 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	B2	Give B1 for any element correct to 3 dp (other than 0 or 1)	
				[2]		
5	(vii)		$\mathbf{L} \begin{pmatrix} 0 \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ 0 \end{pmatrix} = \begin{pmatrix} 0.5438 \\ 0 \\ 0 \\ 0 \\ 0.4562 \end{pmatrix}$	M1M1	Using L and the initial column matrix	
			P(wins a prize) = 0.4562	AI [3]		

Question		Answer	Marks	Guidance	
5	(viii)	Maximum probability is 0.7092 Always start with 3 lives	B1 ft B1 [2]		
5	(ix)	$\mathbf{L} \begin{pmatrix} 0 \\ 0.1 \\ p \\ q \\ 0 \end{pmatrix} = \begin{pmatrix} 0.4 \\ 0 \\ 0 \\ 0 \\ 0.6 \end{pmatrix}$	M1		
		$0.7880 \times 0.1 + 0.5525 p + 0.2908(0.9 - p) = 0.4$ P(2 lives) = 0.2273, P(3 lives) = 0.6727	M1 A1 [3]	Or $0.0212 + 0.4475 p + 0.7092(0.9 - p) = 0.6$ Obtaining a value for <i>p</i> or <i>q</i> Accept values rounding to 0.227, 0.673	Allow use of $p + q = 1$
5		Post-multiplication by transition matrix		Allow tolerance of ± 0.0001 in probabilities throughout this question	
5	(i)	$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.5 & 0.05 & 0.45 & 0 & 0 \\ 0 & 0.5 & 0.05 & 0.45 & 0 \\ 0 & 0 & 0.5 & 0.05 & 0.45 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	B3	Give B2 for four rows correct Give B1 for two rows correct	
5	(ii)	(0, 1/, 1/, 1/, 0) p ⁸	[5] M1	For \mathbf{P}^8 (allow \mathbf{P}^7 or \mathbf{P}^9) and initial row	
		$(0 \ \gamma_3 \ \gamma_3 \ \gamma_3 \ 0)$	MH	matrix	
		$= (0.5042 \ 0.0230 \ 0.0278 \ 0.02071 \ 0.4242)$			
		$P(3 \text{ lives}) = 0.0207 \ (4 \text{ dp})$	E1 [2]	Correctly shown	

Question		n	Answer	Marks	Guidance	
5	(iii)		Let $q(n) = P(not yet ended after n tasks)$			
			$= \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix} \mathbf{P}^{n} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$	M1 M1	Obtaining probabilities after 10 tasks Adding probabilities of 1, 2, 3 lives	Allow M1 for using \mathbf{P}^9 or \mathbf{P}^{11}
			q(10) = 0.0371	A1		
				[3]		
5	(iv)		q(9) - q(10)	M1	Using $q(9)$ and $q(10)$	
			= 0.05072 - 0.03709	M1	Evaluating q(9)	
			= 0.0136	A1		
		0.0		[3]		
		OR	$\begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix} \mathbf{P}^9$			
			=(. 0.01506 . 0.01355 .)		M1 Probs of 1 and 3 lives after 9 tasks	
			$0.01506 \times 0.5 \pm 0.01355 \times 0.45$		M1	
			= 0.0136		A1	
5	(v)		q(13) = 0.01374	M1	Evaluating $a(n)$ for some $n > 10$	
			q(14) = 0.00998	M1	Consecutive values each side of 0.01	
			Smallest N is 14	A1	Must be clear that their answer is 14	Just $N = 14$ www.earns B3
				[3]		
5	(vi)		(1 0 0 0 0)			
			$\mathbf{P}^{n} \rightarrow \begin{pmatrix} 0.7880 & 0 & 0 & 0 & 0.2120 \\ 0.5525 & 0 & 0 & 0 & 0.4475 \\ 0.2908 & 0 & 0 & 0 & 0.7092 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{L}$	B2	Give B1 for any element correct to 3 dp (other than 0 or 1)	
				[2]		

June	2013
------	------

Question		Answer	Marks	Guidance	
5	(vii)	$(0 \frac{1}{3} \frac{1}{3} \frac{1}{3} 0)$ L	M1M1	Using L and the initial row matrix	
		$=(0.5438 \ 0 \ 0 \ 0.4562)$			
		P(wins a prize) = 0.4562	A1 [3]		
5	(viii)	Maximum probability is 0.7092	B1 ft		
		Always start with 3 lives	B1		
			[2]		
5	(i x)	$\left(\begin{array}{cccccccc} 0 & 0.1 & p & q & 0\end{array} ight)\mathbf{L}$			
		$= \begin{pmatrix} 0.4 & 0 & 0 & 0 & 0.6 \end{pmatrix}$	M1		
		$0.7880 \times 0.1 + 0.5525 p + 0.2908(0.9 - p) = 0.4$		Or $0.0212 + 0.4475 p + 0.7092(0.9 - p) = 0.6$	
			M1		Allow use of $p + q = 1$
		P(2 lives) = 0.2273, $P(3 lives) = 0.6727$	A1	Accept values rounding to 0.227, 0.673	
			[3]		